首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7928篇
  免费   408篇
  国内免费   436篇
  2023年   81篇
  2022年   91篇
  2021年   175篇
  2020年   172篇
  2019年   226篇
  2018年   214篇
  2017年   169篇
  2016年   207篇
  2015年   246篇
  2014年   477篇
  2013年   651篇
  2012年   401篇
  2011年   477篇
  2010年   362篇
  2009年   401篇
  2008年   439篇
  2007年   435篇
  2006年   390篇
  2005年   367篇
  2004年   338篇
  2003年   296篇
  2002年   249篇
  2001年   175篇
  2000年   127篇
  1999年   136篇
  1998年   134篇
  1997年   111篇
  1996年   63篇
  1995年   70篇
  1994年   79篇
  1993年   64篇
  1992年   54篇
  1991年   59篇
  1990年   55篇
  1989年   45篇
  1988年   38篇
  1987年   33篇
  1986年   48篇
  1985年   66篇
  1984年   93篇
  1983年   73篇
  1982年   75篇
  1981年   52篇
  1980年   59篇
  1979年   46篇
  1978年   34篇
  1977年   24篇
  1976年   28篇
  1975年   24篇
  1974年   21篇
排序方式: 共有8772条查询结果,搜索用时 15 毫秒
1.
The oxidized B chain of insulin was used as a simple model for further consideration of limited proteolysis with low substrate:enzyme ratios. With low B chain:trypsin ratios, the ordinarily slower cleavage rate of the -Lys29-Ala30 bond essentially equaled the cleavage saturation rate of the -Arg22-Gly23 bond. This led to the disappearance of octapeptide which ordinarily forms most rapidly. Heptapeptide and alanine, formed mainly by cleavage of the octapeptide, decreased somewhat at high enzyme relative levels. Trypsin added to B chain formed a single chromatographic peak.  相似文献   
2.
We previously reported the identification of DP-1 isoforms (α and β), which are structurally C-terminus-deleted ones, and revealed the low-level expression of these isoforms. It is known that wild-type DP-1 is degraded by the ubiquitin-proteasome system, but few details are known about the domains concerned with the protein stability/instability for the proteolysis of these DP-1 isoforms. Here we identified the domains responsible for the stability/instability of DP-1. Especially, the DP-1 “Stabilon” domain was a C-terminal acidic motif and was quite important for DP-1 stability. Moreover, we propose that this DP-1 Stabilon may be useful for the stability of other nuclear proteins when fused to them.  相似文献   
3.
The cytogenetic effect of zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, was evaluated in vivo, in mouse bone marrow cells, by assessing the percentage of cells bearing different chromosome aberrations. The studies included different conditions for animal treatment, as follows: (1) single intraperitoneal (ip) injection, (2) repeated ip injections, (3) pre-treatment for 24 h with Vitamin E (Vit E), and (4) pre-treatment for 4 h with 17β-estradiol (17β-Est) or progesterone (Prog). ZEN induced different types of chromosome aberrations, which was concentration-dependent (2–20 mg/kg bw). These doses corresponded to 0.4–4% of the LD50 in the mouse. Interestingly, when the dose of ZEN (40 mg/kg) was fractionated into four equivalent doses (4 × 10 mg/kg bw), into three doses (15 + 10 + 15 mg/kg bw), or into two equivalent doses (2 × 20 mg/kg bw), given every 24 h, the percentage of chromosome aberrations increased significantly. This finding suggests that ZEN proceeds by reversible binding on receptors that could become saturated, and that it damages the chromosomes in a ‘hit and go’ manner. Furthermore, pre-treatment of animals with 17β-estradiol or progesterone significantly decreased the percentage of chromosome aberrations, suggesting that (i) these hormones bind to the same cytoplasmic receptors transported into the nucleus to elicit DNA damage, (ii) they may play a role in preventing chromosome aberrations induced by ZEN. Similarly, Vit E prevented these chromosome aberrations indicating that Vit E, previously reported to prevent most of the toxic effects induced by ZEN, may also bind to the same receptors.  相似文献   
4.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
5.
Summary Bacteria from recreational waters collected from two Lake Erie beaches in Dunkirk, New York were plated onto m Endo LES media. The 16S rRNA gene was then amplified from coliform and non-coliform bacteria using the polymerase chain reaction. The PCR products were characterized by restriction fragment length polymorphism (RFLP) analysis. A total of 8 RFLP groups were identified from the analysis of 920 samples and selected PCR products from each group were sequenced. The DNA sequence analysis indicated that more than half of the bacteria identified as coliforms on the m Endo plates belonged to the genus Aeromonas from the family Aeromonadaceae. Most of the remaining coliforms were from the Enterobacteriaceae. The data indicate that m Endo agar plates allow the growth of non-coliform bacteria, especially Aeromonas species.  相似文献   
6.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
7.
《Cell reports》2020,30(3):630-641.e5
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   
8.
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism''s survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.  相似文献   
9.
The effect of the antibiotics thiostrepton and micrococcin on EF-Tu-catalyzed (ribosome-dependent) GTP hydrolysis in the presence of A-Phe, C-A-Phe, or C-C-A-Phe (related to the sequence of the 3′-terminus of aminoacyl-tRNA)(System I) or by methanol (‘uncoupled GTPase’, System II) was investigated. In System I, thiostrepton increases the binding affinities of the effectors to the EF-Tu·GTP·70 S ribosome complex, as well as the extent of the GTP hydrolysis, while the KGTPm is virtually unchanged. Similarly, in the uncoupled system (System II) and in the absence of effectors, thiostrepton significantly increases VGTPmax, whereas KGTPm remains unaffected. Micrococcin is without any effect in both systems. The ‘uncoupled GTPase’ (in System II) is also strongly inhibited by C-A-Phe. The results indicate the crucial role of the EF-Tu site which binds the aminoacylated C-C-A terminus of aminoacyl-tRNA in promoting GTP hydrolysis. It follows that the binding of the model effectors (such as C-C-A-Phe) to that site is favorably influenced by the interaction of thiostrepton with the 50 S ribosomal subunit, whereas thiostrepton, per se, does not influence the affinity of EF-Tu for GTP.  相似文献   
10.
Mitogenic stimulation of protein synthesis is accompanied by an increase in elF-4E phosphorylation. The effect on protein synthesis by induction of differentiation is less well known. We treated P19 embryonal carcinoma cells with the differentiating agent retinoic acid and found that protein synthesis increased during the first hour of addition. However, the phosphorylation state, as well as the turnover of phosphate on elF-4E, remained unchanged. Apparently, the change in protein synthesis after RA addition is regulated by another mechanism than elF-4E phosphorylation. By using P19 cells overexpressing the EGF receptor, we show that the signal transduction pathway that leads to phosphorylation of elF-4E is present in P19 cells; the EGF-induced change in phosphorylation of elF-4E in these cells is likely to be regulated by a change in elF-4E phosphatase activity. These results suggest that the onset of retinoic acid-induced differentiation is triggered by a signal transduction pathway which involves changes in protein synthesis, but not elF-4E phosphorylation. © 1995 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号